PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998

Stochastic resonance: Noise-enhanced phase coherence
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We study stochastic resonance in periodically driven stochastic bistable systems in terms of phase synchro-
nization. By introduction of an instantaneous phase for the output we show explicitly the effect of phase
locking between the input and output. The stochastic dynamics of the phase difference between input and
output appears to be similar to that of synchronized classical self-sustained oscillators. The degree of phase
coherence is estimated by employing the effective diffusion constant for the phase difference. This coherence
becomes maximal for optimal noise intensities. However, phase synchronization effects can only be observed
for sufficiently large magnitude of the periodic inputting sigi&1063-651X98)11812-3
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[. INTRODUCTION residence time distribution indeed refers to nonlinear effects
with respect to the signal amplitude. However, it provides no
The phenomenon of stochastic resonafg® [1] has information about the instantaneous matching of outputting
been extensively studied over the last two decd@ed]. SR  switching events and of the input signal. For how long are
occurs in a wide class of nonlinear systems driven simultanoise-induced switchings between metastable states in syn-
neously by noise and a signal. The necessary property whicghrony with periodic input? Is it possible to observe fre-

a nonlinear system should possess to be able to demonstr&tgency locking effects in finite regions in the parameter
SR is the existence of a noise-controlled time scale. space of the system as it is in classical self-sustained oscil-
The traditional description of SR defines this effect aslators? It is important that such a formulation of the problem
amplification of a weak signal applied to the input of the is just the same as in classical theory of oscillations, where
system by tuning the noise intensity. SR manifests itself irSynchronization is originally understood as instantaneous
the existence of a bell-shaped maximum in the dependend®atching of the input/output phases. The positive answer to

of the spectral power amplificationSPA [4] or of the the second question has recently already been giv¢h3h
signal-to-noise ratidSNR) [5] versus noise intensity. For and in[14] where the phenomena of a mean switching fre-
extremely weak signals SR is correctly described by lineafiuency locking have been reported for periodically driven
response theor}§6]. In this case a stochastic resonator mightand coupled stochastic bistable systems, respectively. Arnold
be thought of as an equivalent filter with a noise-tuned transtongues of synchronized states were also observed in inves-
fer function determined by the linear susceptibility of the tigations of periodically driven noisy excitable systefts].
system. In order to calculate the response of the system we The goal of the present study is to bridge between the
have to know its statistical properties in an unperturbed staclassical notion of synchronization as instantaneous phase
tionary state(i.e., in the absence of signaFrom this point locking[16] and synchronizationlike effects occurring in SR
of view the structure of weak signals is immaterial: the sig-Systems. For this purpose we first go back to the classical
nal can be harmonici quasiperiodjz:l, or even aperiodic definition of Synchr0n|zat|0n in Sec. Il. In Sec. Ill we discuss
broadband noisy8,9). various definitions of an instantaneous phase for periodically
An alternative description of SR, based on the statistics ofifiven stochastic bistable systems. The effects of phase and
residence times, has been proposefiliny11 and character- frequency locking are discussed in Sec. IV and compared
izes SR as a kind of synchronization of the switching eventdvith other descriptions of SR in Sec. V.
by external periodic signal. Based on an accurate systematic
theory this approach has been reconsit_jered .rec_ently by C_hoi Il. SYNCHRONIZATION
et al. [12}. In th.e a}bse_nce of the periodic excitation .the resi- IN SELE-SUSTAINED OSCILLATORS
dence time distribution possesses an exponential shape.
However, when the periodic signal is switched on and its The fundamental phenomenon of synchronizafi] oc-
amplitude is sufficiently strong, the residence time distribu-curs in coupled or periodically forced nonlinear self-
tion becomes structured and contains series of peaks centersaistained oscillators. In the absence of the periodic force or
at the odd multiples of the half period of the signal. At anif uncoupled the system should possess a stable limit cycle in
optimal noise level the peak at the half driving period be-the phase space which reflects stable oscillations occurring in
comes dominant and its height with subtracting exponentialhe system. The properties of these oscillations, i.e., their
background 12] passes through a maximum by varying the natural frequency and their amplitude, are determined by

noise intensity. their internal dynamics, only, and do not depeiml some
For vanishingly small driving amplitudes the residencereasonable ranggsn initial conditions.
time distribution is not structured at dllL2]. That is, the Synchronization can be defined as the locking between
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the instantaneous phas@gt) of a state variable of the os- This is the effective diffusion constant describing the spread-
cillator and the phas&(t)=Qt of the external periodic ing of an initial distribution of the phase difference along the
force, i.e., if[n®(t) —mW¥(t)|<const. A weaker condition potential profile. It can be shown thBi is proportional to
requires frequency lockin@ = ®=(m/n)(Q,. In both cases the mean escape ratefrom a well of the potential(¢),
m,n are integer numbers. In the parameter space of the sys€., Deg=4m°r [18]. Hence,D is proportional to the in-
tem these requirements are fulfilled in finite regions calledverse mean time interval of a locked phase difference. As a
Arnold tongues. Thereby, the onset of synchronization corfesult, effective synchronization of noisy oscillators is
responds to a birth of resonant limit cycles lying on a twoachieved, if
dimensional torus in the phase space of the system. Further
we will restrict to the simplest case of 1:1 mode locking D.<2? %
effS <& . 3

(m=n=1). n

To the best of our knowledge the topic of the influence of
noise on synchronizing self-sustained oscillators was firsThis condition determines regions of effective synchroniza-
raised by Rito\[17]. The effect of Gaussian white noise was tion in the parameter space of the system.
studied in detail by Stratonovidii 8] and generalized to col- ~ The influence of additive noise on synchronized self-
ored noise[19]. Inclusion of noise in periodically forced Sustained oscillators is well knowi8,19: the effective dif-
self-sustained oscillators led to amplitude and phase fluctugusion constant grows with the increase of the noise strength,
tions [18]. As a result, the phase differenag(t)=®(t)  €.9., phase slips appear more frequently. In other words,
— W (t) also fluctuates. If the external periodic force is con-noise acts against synchronization leading to the loss of
taminated by additive Gaussian noise and under the assumphase coherence and shrinks Arnold tong&is22.
tion of a constant amplitude its slow dynamics can be de- In the next sections we show that SR systems display just

scribed by the stochastic differential equati@DE) an opposite behavior: With the increase of the noise intensity
the degree of phase coherence first grows and only for suf-

, ficiently large noise does the system become asynchronous.
d=A—€eG(p)+&(1). (1) Hence, SR systems become effectively synchronized in a
finite region of optimally selected noise intensities.

Here A=Q -, is the frequency mismatciG(¢) is a 27

periodic function e is the parameter of nonlinearity, agt) 1. INSTANTANEOUS PHASE
is noise. In the case of a van der Pol oscilla®f ¢) FOR PERIODICALLY DRIVEN
=sin¢ and the phase difference performs overdamped STOCHASTIC BISTABLE SYSTEMS

Brownian motion in the tilted periodic potentidl (¢)= An overdamped stochastic bistable oscillator, the most

—A¢—ecosg [18]. If A<e and the noise strength is small o551 example of a SR system, obviously does not have a
the phase difference fluctuates for a long time inside a Weljjaterministic frequency. Instead, it possesses a noise-

of the potentialU(¢) (that means phase lockindt rarely  controlled time scale represented by the Kramers time or
makes jumps from one potential well to another dhe.,  mean escape time from a potential well and has essentially
displays phase slips o __relaxation features. In the frequency domain this time scale

The definition of synchronization in the presence of noiseyatermines the mean switching frequertMSF) of the sys-
appears to be “blurred.” For noisy systems one has to Usgem_ A periodic signal subjected to the input of a stochastic
the notion of aneffective synchronizatiofi20]. It can be | agonator represents therefore a single external “clo&’

defined via imposing restrictions {9 phase fluctuationsii)  \hich is amenable to synchronize the switchings between
frequency fluctuations, andii) output signal-to-noise ratio ihe metastable states of the system.

[20] whereby the conditions in this sequence of restrictions Further, we numerically treat this overdamped Kramers
are subsequently lowered. Note that SR measures based ggiliator driven by an external periodic force with frequency

the residence time distribution refer to the second type of) |4 canonical units it is governed by the SIE3)]
definition.

Further on, our investigations use the strongest definition L 3
. ' o 2 X=X—X>+ 2D §&(t) + A cog Qpt+ ¢hg), 4
of effective synchronization based on the statistics of phase 30 ot + o) @

fluctuations. We assert that a npisy system i_s effectively SYNwhere£(t) is white Gaussian noisB scales the intensity of
chronized to an external periodic forcelif,ca,is larger than  ihis noise andy, is the initial phase of the signal. We set

some_given \(alue, whefByeaniS the mean time in.the course 0 for convenience. The amplituda of the periodic
of which the instantaneous phase of the system is locked. Wgyce is always sufficiently small: the signal cannot switch
will require that this mean time between two phase slipshe system from one state to the other one in the absence of

should be greater than large multiples of the driving period,sise. For the low-frequency modulation this requires that
Tmac=N2m7/Qq, N>1.

A quantity related to this definition and which will be 2
used later on as the measure of phase coherence represents A<A,=——==0.388.... (5)
Def, is defined as 3V3

14 The case of suprathreshold valuésXA;) has been studied
recently in[24] in connection with the phenomenon of reso-
Det=7 m[wz(t»_((b(mz} @ ant trgppi[ng.] g
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In order to study synchronization in the above described From Eq.(12) we derive the SDEs for the instantaneous
classical sense we need to introduce an instantaneous phasaplitude and phase:
of the system. It is well known that for aperiodic signals the
definition of the phase becomes ambiguous.

A formal but general definition of an instantaneous phase
is based on the concept of an analytic signal introduced by
Gabor[25]. It is widely used in the theory of nonlinear os- ) 1 A 1
cillations and wave$26,27] as well as in communication d=—0p— Zaz sif2(¢+Qot)]— Zsing+ Z &x(1),

S : a a
theory [28]. Recently, the definition of an instantaneous (13)
phase by this concept has been applied to the study of phase

synchronization of chaotic systerf@9]. The analytic signal \yhere the noise sources ,(t) are defined as
w(t) is a complex function of time defined as '

. 1
a=a— Ea3[1+ coZ(p+Qot) ]+ Acosp+ &,(1),

w(t)=x(t) +iy(t) =a(t)e®®, () £(D)=£(t) cosd+ 7(1) sin®,
Herey(t) is the Hilbert transform(HT) of the original pro- &(t) = n(t) cos®— (1) sin®.

cessx(t), Note that Eqs(13) are exact and similar to those for ampli-

1 (= x(7) tude and phase fluctuations of a van der Pol oscillpt8i.
y(t)= —J dr. (7)  This similarity arises due to the structure of the nonlinear
7wt transformation which we have used. However, there is also
an important difference. This distinction appears in the sec-
8nd equation for the phase. In the case of a van der Pol
oscillator, an additional tern@(2) occurs in the right-hand
§ide of Eq.(1) remaining in the frequency mismatch. It refers
to the natural frequency of the oscillator. The absence of this
item in Eq.(13) reflects simply the fact that the overdamped
oscillator has no deterministic natural frequency, e.g., there
is no rotational term in the equation for the phase of the
unperturbed systemA=0).
y(t) The exact SDE$13) are highly nonlinear with multipli-
(I)(t):arctay{—} a’(t)=x3(t) +yA(t), (8) cative noise. For computational reasons it is more convenient
x(t) to integrate original SDE4) numerically and then to per-
form the HT by well established techniquésee, for ex-

In the latter expression the integral is taken in the sense of
Cauchy principal value. In the case of stochastic siguit)

the convergence of this integral should be understood in th
mean square seng@8]. As known, the Hilbert transform
performs a— 7/2 phase shift for each frequency component
of an arbitrary signal. The instantaneous amplitad® and
phased(t) of x(t) are unambiguously defined through this
concept as

as well as the instantaneous frequemgt) = d(t), ample,[30]). In Fig. 1 we show a typical time series of the
state variable(t), of the instantaneous amplitudgt), and
1 - - of the phaseb(t).
(t)= a2(1) [x(H)y(t) —y(t)x(t)]. ©) Clearly, other definitions of the phase are possible too. In
particular, for stochastic bistable systems we can introduce
Afterwards the mean frequendw) is given by an instantaneous phase basing on the occurrence of switch-

ings. Consider interwell switchings: by an appropriate trig-
1T gering of the original process(t) the continuous process
<w>:T“m $f0 w(t)dt. (100 x(t) can be mapped into a stochastic point procfiss,
o wheret, are the times of a successive level crosskig
It is also convenient to introduce the phase difference be= 1 (S€€[10] for detaily. The residence time between two

tween the output and input as subsequent switching events is th&()=t,,,—t,, <t
<ty+1. A corresponding dichotomic procesgt) can be
H(t) =D (1) — Q. (11 introduced via the ansatz

The concept of the analytical signal can directly be ap- u(t) =xmsgricos®(t)], (14
plied to the bistable dynamidd) in order to derive explicit
SDEs for the instantaneous amplitude and the phase diffeivhere the phasé(t) is defined a$31]
ence. In doing so we use the remarkable property of any —t
analytic signal that its Fourier transform vanishes for nega- _ —lk
tive frequencies. Then the SDE for the analytic signal of the o= e 1— Tk, eSSt (19
periodically driven bistable system reads

A phase defined in this way is a piecewise-linear function of
time. In the case of a purely periodic switching process,
when transitions between metastable states are fully synchro-
nized with the period z/Q, this definition gives exactly
The analytic noiseg (t) = &(t) +in(t) with 7(t) being the Qgt. The instantaneous frequenayt) = 7/T(t) is constant
Hilbert transformation of(t). during the waiting period,<t<t,. ; inside a potential well,

. 1 )
W=W—Z(3a2W+W3)+E(t)+Ae'QOt. (12)



PRE 58 STOCHASTIC RESONANCE: NOISE-ENHANCED PHAS. . . 7121

4.47 : . . .
(a)

100

80

i 60

224 ;‘L 40

:’*‘ 2
il o(r)

x(1), a(t)

=80

-2.24 ‘ ‘ ‘ ‘ oo . ‘ . ‘ .
10 n2 n4 18 ne 120 0 100 200 300 400 500 600

#T o HT,

(b) _// FIG. 2. The instantaneous phase difference calculated using the
850 | / E analytic signal approach for indicated values of noise intensity. For
/ medium noise the phase difference is locked=0.268, (1,
o =0.002.

750 ~ . chance. The analytic signal concept causes an automatic
() el separation of different time scal¢27]. This follows from
/ the property of the Hilbert transformation to freeze slow
/ variables. In our situation we have fast intrawell fluctuations
650 |- / . and slow switchings between metastable states. The global
/ dynamics of the system, e.g., transitions between the meta-
4 stable states, gives the main contribution to the phase dy-
namics, while the short-time fluctuations inside a potential

550 1 1 1 1 H H 1
00 o %0 50 0 T50 well are immaterial for global phase dynamics.

0T

IV. NOISE-ENHANCED PHASE LOCKING

FIG. 1. (a) Time series of the state variabtét) (solid line) and
of the instantaneous amplitud@gt) (dashed ling (b) Time series Typical time series of the phase differenggt) = ®(t)
for instantaneous phade(t) of the bistable system defined accord- — ()4t using the analytic signal representation are shown in
ing to the concept of the analytical sigriablid line) and according  Fig. 2 for different values of the noise intensity. For small
to the interwell switching analysiglashed ling Its convergence is  and large noise the switching process and the periodic force
nearly perfect. As seen the instantaneous phase of the bistable syge incoherent: on average the phase difference monotoni-
tem except some rare events strictly follow the applied periodiccally decreases or increases with time. For weak noise the
force (linear slopg. Phase jumps are accompanied by positive ex-mean switching frequency is much smaller than the driving
cu.rsions of .th.e instantaneous amplitude. The time axis is given iri‘requency and the signal phase surpasses the phase of
units of driving period To=2/{,. A=0.089, D=0.04, Qo  gyjtchings. On the contrary, for a large noise intensity the
=0.002. signal phase lags behind as the mean switching frequency

: : o ) becomes higher than the driving frequency. However, within
while the mean frequency for this definition is equivalent 0gome region of noise intensities the phase coherence be-

the mean switching frequency of the system: comes amenable to observation. This situation is shown in
M Fig. 2. At an optimal noise level the phase is locked during

l 7T B . . - - .
()= lim — (16) the course of observation time. As noise intensity deviates

from this optimal value the phase slips appear, so that we can
speak about partially synchronized dynamics. It is remark-
It can also be calculated via residence time distribution.  able that the dynamics of the phase differeqde) is very
Note that the first definition of the phase bears both intersimilar to that of a synchronized self-sustained oscillator and
well and intrawell motions, while the second one takes intocan be qualitatively described by the SOE with coeffi-
account only global switching dynamics. We underline thatcients depending on the noise intensity, driving amplitude,
the first definition does not require the introduction of aand frequency.
threshold value. Nevertheless, both definitions display Figure 2 clearly shows the effect of synchronization: the
equivalent averaged behavior up to a constant phase shifthases of the switching process and of the input signal are
(The problem of constant phase lag between input and perinstantaneousljyocked at an optimal noise level. It is also
odic response in SR systems versus the noise strength hasen from this figure that by tuning noise we can increase the
been discussed in detail [§]). This coincidence is not by duration of time intervals of locking. We remark that the

Moo M1t — b
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o o FIG. 4. The effective diffusion constant versus noise intensity
FIG. 3. Mean frequencyl0) (solid line) and the mean switching oy indicated values of driving amplitude fé,=0.002.
frequency(16) (symbolg versus noise intensity for different values

of driving amplitude. For sufficiently large amplitudes over a finite Is exactly the driving fr nev. This situation is shown
range of noise intensity the frequencies are locked to the frequenc quals exactly the g frequency. S situation 1S sho

of the driving signal A=0 (1), A=0.089(2), A=0.178 (3), and Fig. 5. Although there are relatively short locking seg-
A=0.268(4); 0,=0.002. ments, the phase difference displays random-walk-like be-

havior without a preferred slope.

same behavior has also been observed for phases determinedFrom Fig. 4 we conclude that for sufficiently strong sig-
via switching timeg15). nals the diffusion of the phase difference is extremely small

The mean frequency, determined via the analytic signain a finite region of noise intensities. It enables us to define
concept(10), and of the mean switching frequency, calcu-regions of effective synchronization in the parameter space.
lated by averaging the residence tin&$) is shown in Fig. We indicate a systen¥) as effectively synchronized to an
3 versus noise intensity for different values of the drivingexternal periodic signal if its instantaneous phase is locked
amplitude. Again this figure displays the effect of locking the during 100 periods of the signal. This condition is expressed
mean switching frequency reported|[ih3]. For vanishingly —asD s<27Q,/100.
small signals the mean frequency follows the Kramers law Regions of synchronization in the parameter pldn®
and grows exponentially with increasing noise strengthare shown in Fig. 6 for different values of driving frequency.
However, with a sufficiently largeA the mean frequency A periodic force with amplitude less than the presented
matches the driving frequency in a finite region of the noisecurves does not synchronize the bistable system in the above
intensity. Note that the behavior of the mean frequencieslefined sense. The regions have a tonguelike shape. The
calculated using two different definitions of instantaneousthresholdlike character of the synchronization is clearly seen.
phase is nearly converging. It is important to mention thatit means that for a given frequency the minimal amplitude
the effect of mean frequency locking occurs in a finite regionnecessary for synchronization never vanishes. Recall that ex-
of noise intensities. The width of this region depends on theperimentally obtained “Arnold tongues” of a periodically

driving amplitude and the frequen¢g3]. driven noisy Schmitt triggef13] also have the same thresh-
Although the effects of the phase and of the mean fre-
guency locking already indicate a synchronizationlike behav- 40
ior we need to calculate second-order statistical quantities ir
order to determine synchronization according to the defini- 20 | i
tions given above. We aim to answer the question: how long
is the phase at the output locked by the signal? For this 0 i
purpose we calculate the effective diffusion constant. H"( "m\
The dependence of the effective diffusion consi@ntvs _20 |
noise intensity is shown in Fig. 4 for different values of ¢® !m
driving amplitude. In contrast to classical oscillators, where _40 | w i
D¢ monotonically increases, here the effective diffusion
constant passes through a minimum. This means in its turr 60 | j i
that the phase becomes locked for longer time intervals with
the increase of the noise intensity. In other words, we can _80 | i
enhance phase coherence by increasing the noise level in tf
system. This can be considered as a new manifestation ¢ _100

0 100 200 300 400 500 600 700 800 900 1000

stochastic resonance. T
[e)

It is important to underline that effects of phase and fre-
guency locking occur for stron¢put undercritical signals FIG. 5. The phase difference versus tirfie units of driving
only. For a weak signal the system is only partially synchro-period for small amplitudes. Only partial synchronization over
nized even in the case when the mean switching frequencshort-time segments can be observie:0.089,D =0.04.
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D FIG. 7. SPA versus noise intensity for different values of the
) o ] o driving amplitude: A=0.089 (boxeg, A=0.179 (triangles, A
FIG. 6. The effective synchronization regions for indicated val- _  2gg (circles. Inset: SPA versu® for A=0.02. The linear re-

ues of driving frequency. The output is effectively synchronized forsponse approximation is shown by the dashed kg=0.002.
amplitudes above the presented curves. To achieve synchronized

states for a given frequency there exists a nonvanishing threshold ) ) . )
for the amplitudes. still exists. The SPA takes its maximum at a certain value of

noise intensity.

old feature. With the increase of the driving frequency the !t iS important to note that the values of noise intensity
threshold value of the driving amplitude also increases ané@ximizing the SPA approximately correspond to those at
the region of synchronization shrinks. This feature is deterWhich the effective diffusion constant is minimal, i.e., to the
mined by the low-frequency character of SR in bistable sys/MOSt phase coherent state of the system. On the other hand,
tems. Our numerical experiments have verified that the medh® Signal-to-noise ratio is maximized at sufficiently larger
sures of phase coherence do not display any resonanceli¥@/ues of noise intensity. L
(nonmonotonous behavior as functions of driving fre- The re5|d_enc_e time distribution gives a weaker def|n_|t|(_)n
quency. pf synchronization in SR systems based_ on the restriction
Qualitatively the same results have been obtained for arfmPosed to the frequency fluctuations. This approach defines
other representative of SR systems, the Fitz Hugh_Nagum§ynchron|zat|on in an av'efaged sense. .Really, the existence
neuron mode[32]. SR and synchronization in this model Of the peak at the half driving period indicates that the num-
have been extensively studied[i83,15. The basic features _ber of residence times which are near the hal_f drl_vmg period
in this case can be gained by studying the spike trains gertS much larger than the whole number of switchings occur-

erated by the system. A suitable definition of the instanta!ing during an observation time. However, it does not require
neous phase is given by instantaneous phase locking during the course of long times.

Therefore the residence time distribution recovers an average

¢ phase preference of the system. That is why the measures

- — Tk based on th id time distributi flect th hro-
D(t)=2r——— 427K,  t<t<tp,, (17) ased on the residence time distribution reflect the synchro

Ti+1~ Tk nization nature of SR even for weak signals.
Let us take a comparatively small amplitude of the signal,
where ther, label times of firing events. A=0.089. The residence time distributions are shown in Fig.

8 for different noise intensities. Although the residence time
distribution reflects synchronizationlike behavior, the phase
dynamics cannot be viewed as synchronized: even when the
mean switching frequency equals the driving frequency,
(w)=Q¢, the phase difference performs Brownianlike mo-
In the traditional description of SR in terms of spectraltion with zero slope(see Fig. % In the synchronization
density, information about the instantaneous phase is lost. I(phase lockingregion the residence time distribution is rep-
Fig. 7 we show numerically obtained SPA versus noise intesented by a single narrow peak at the half driving period.
tensity for different value of the driving amplitude. In the A meaningful criterion of SR based on the residence time
inset we show the SPA for an extremely weak signal and theistribution that has been proposed recenthyf12] is the
approximation according to linear response thelegry The  height of the peak of the residence time distribution minus
SPA decreases with the increase of the driving amplitude andnmodulated residence time distributithe deviation from
the value of optimal noise intensity at which the SPAthe unperturbed residence time distribujien the half driv-
achieves maximal values shifts to lower noise Ildvgl At ing period. This quantity, labeled asis shown in Fig. 9 for
the same time, the shape of the SPA curve flattens as thibe different values of driving amplitude as a function of
amplitude of the signal increases. However, the effect of SRioise intensity. With the increase of driving amplitude,

V. SPECTRAL POWER AMPLIFICATION,
RESIDENCE TIME DISTRIBUTIONS,
AND PHASE SYNCHRONIZATION
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0.0006 - | A=0.089 h FIG. 9. Height of the first peak in the residence time distribution
with extracted unmodulated residence time distribution vs noise in-
N® tensity for different values of the driving amplitudé&=0.089
0.0004 - T (boxes, A=0.179(triangleg, A=0.268(circles. 0 =0.002.
0.0002 |- .
basing on the analytic signal concept and on the switching
J time sequences. Both phase definitions provide the same re-
0.000 s s , sults for averaged quantities. The effect of phase synchroni-
0.0 1.0 2.0 3.0 4.0 ) X o i
VT, zation of thg stochastic s_wnqhmg process is shown.to occur
in finite regions of the noise intensities. However, this effect
0.0006 - ' ' ' is restricted by comparatively large amplitudes of external
L signal. A measure of phase coherence, the effective diffusion
D=0.0578 constant, passes through a minimum being plotted versus
0.0004 | A=0.089 | noise intensity. Therefore stochastic resonance manifests it-
self as a phenomenon of noise-enhanced phase coherence.
N(t) This noise-enhanced ordering is also reflected in the nonmo-
notonous behavior of the source entropy as was found in
0.0002 [ . [34].
For a weaker signal the synchronization features of SR
I L systems can be gained by the residence time distribution.
This approach gives an averaged description of SR as a syn-
0:000,5 1.0 2.0 3.0 20  chronization phenomenon. However, synchronization is ab-
vT

]

FIG. 8. Residence time distributions for indicated values of

noise intensity and driving amplitud€ = 0.002.

sent for extremely weak signals.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with F. Moss, I.

also increases and the value of noise intensity which maxiKhovanov, M. Rosenblum, A. Pikovsky, and J. Kurths. A.N.

mizesa is shifted towards smaller values bf

VI. CONCLUSION

is a recipient of financial support from the Fetzer Institute.
This work has been supported in part by INTAS Grant No.
96-0305, by common research project of DFG and RFRF
[Grant No. 436 RUS 113/334MR)], and by the State Com-

We have studied SR in classical terms of phase synchranittee on Higher Education of the Russian Federaf®rant
nization. We used two definitions of the instantaneous phaséyo. 97-0-8.3-47.

[1] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. 14, 1453
(1982); R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Tellus
34, 10(1982; C. Nicolis, ibid. 34, 1 (1982.

[2] F. Moss, inSome Contemporary Problems in Statistical Phys-
ics, edited by G. Weis$SIAM, Philadelphia, 1994 p. 205; F.

Moss, D. Pierson, and D. O’Gorman, Int. J. Bifurcation Chaos
Appl. Sci. Eng.4, 1383(19949; K. Wiesenfeld and F. Moss,
Nature (London 373 33 (1999; A.R. Bulsara and L. Gam-
maitoni, Phys. Today9 (3), 39 (1996.

[3] The most comprehensive review: L. Gammaitoni, Pnéts,



PRE 58 STOCHASTIC RESONANCE: NOISE-ENHANCED PHAS. . . 7125

P. Jung, and F. Marchesoni, Rev. Mod. Ph¥®.223 (1998 [20] A.N. Malakhov, Fluctuations in Auto-oscillation Systems

a full bibliography can be found at WWW-site http:/ (Nauka, Moscow, 1968

www.pg.infn.it/sr/. [21] V. Shalfeev, inPhase Synchronization Systeradited by V.
[4] P. Jung and P. Haygi, Phys. Rev. A4, 8032(1991). Shakhgildyan and L. BelyustinéRadio i Svjaz, Moscow,
[5] S. Fauve and F. Heslot, Phys. L&TA, 5 (1983. 1982, pp. 95-104(in Russia.
[6] M.Il. Dykman, R. Mannella, P.V.E. McClintock, and N.G. [22] A. Neiman, U. Feudel, and J. Kurths, J. Phys.28 2471

Stocks, Phys. Rev. Let65, 2606 (1990; Pis'ma Zh. Ksp. (1995.

Teor. Fiz.52, 780 (1990 [JETP Lett.52, 144(1990]. [23] P. Jung, Phys. Ref234, 175(1995.

[7] V.S. Anishchenko, A.B. Neiman, M.A. Safonova, and I.A. [24] F. Apostolico, L. Gammaitoni, F. Marchesoni, and S. Santucci,
' ’ ' Phys. Rev. 55, 36 (1997; L. Gammaitoni, F. Marchesoni,

and S. Santucci, ik\pplied Nonlinear Dynamics and Stochas-
tic Systems Near the Milleniynedited by J. Kadtke and A.
Bulsara, AIP Conf. Proc411 (AIP, New York, 1997, pp.
221-226.

Khovanov, inChaos and Nonlinear Mechanics: Proceedings
Euromech Colloquiumedited by T. Kapitaniak and J. Brind-
ley (World Scientific, Singapore, 1995pp. 41-53.

[8] J.J. Collins, C.C. Chow, and T.T. Imhoff, Phys. Rev5E

R332:!.(1993. . ) E[25] D. Gabor, J. IEE Londo®3, 429 (1946; P. PanterModula-
[9] A. Neiman, L. Schimansky-Geier, and F. Moss, Phys. Rev. tion, Noise and Spectral AnalysidcGraw-Hill, New York,
55, R9 (1997). 1965.
[10] L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and 5{26] S. Ritov, Introduction to Statistical RadiophysicéNauka,
Santucci, Phys. Rev. Let62, 349(1989. Moscow, 1975 (in Russiai.
[11] T. Zhou, F. Moss, and P. Jung, Phys. Revd2 3161(1990.  [27] L. Vainshtein and D. VakmanFrequency Separation in
[12] M.H. Choi, R.F. Fox, and P. Jung, Phys. Rev.58 6335 Theory of Oscillations and WavéNauka, Moscow, 1983(in
(1998. Russiai.
[13] B. Shulgin, A. Neiman, and V. Anishchenko, Phys. Rev. Lett.[28] D. Middleton, An Introduction to Statistical Communication
75, 4157(1995; V. Anishchenko and A. Neiman, iStochas- Theory(McGraw-Hill, New York, 1960.
tic Dynamics edited by L. Schimansky-Geier and T.debel  [29] M. Rosenblum, A. Pikovsky, and J. Kurths, Phys. Rev. Lett.
(Springer, Berlin, 1997 pp. 155-166. 76, 1804(1996; A. Pikovsky, M. Rosenblum, G. Osipov, and
[14] A. Neiman, Phys. Rev. B9, 3484(1994. J. Kurths, Physica [104, 219 (1997.
[15] A. Longtin and D. Chialvo, Phys. Rev. Lefto be published [30] J.S. Bendat and A.G. PiersdRandom Data(John Wiley &
[16] A. Andronov, A. Vitt, and S. KhaykinTheory of Oscillations Sons, New York, 1986
(Pergamon Press, Oxford, 196€. HayashiNonlinear Oscil-  [31] A. Pikovsky, M. Rosenblum, G. Osipov, and J. Kurths,
lations in Physical System{®cGraw-Hill, New York, 1964, Physica D104, 219(1997; M. Rosenblum, A. Pikovsky, and
I. Blekhman, Synchronization of Dynamical SysteiiNauka, J. Kurths, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
Moscow, 1971 (in Russiam; Synchronization in Science and 44, 874(1997).
Technology (Nauka, Moscow, 1981 English translation [32] A. Neiman, Dr.Sc. thesis, Saratov State University, 1988
(ASME Press, New York, 1988 Russian.
[17] S. M. Ritov, Zh. EKsp. Teor. Fiz29, 304 (1955. [33] A. Longtin, Nuovo Cimento D17, 835(1995; Chaos5, 209
[18] R.L. Stratonovich,Topics in the Theory of Random Noise (1995.
(Gordon and Breach, New York, 196%ol. 2. [34] A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L.
[19] K. Vogel, H. Risken, and W. Schleich, iHoise in Nonlinear Schimansky-Geier, and J. Freund, Phys. Rev. L#6t.4299
Dynamical Systemedited by F. Moss and P.V.E. McClintock (1996; L. Schimansky-Geier, J. Freund, A. Neiman, and B.

(Cambridge University Press, Cambridge, England, 1989 Shulgin, Int. J. Bifurcation Chaos Appl. Sci. Eng, 869
Vol. 2, p. 271. (1998.



